
Towards Finding Accounting Errors in Smart Contracts
Brian Zhang

ABSTRACT
Bugs in smart contracts may have devastating effects as they tend
to cause financial loss. According to a recent study, accounting
bugs are the most common kind of bugs in smart contracts that
are beyond automated tools during pre-deployment auditing. The
reason lies in that these bugs are usually in the core business logic
and hence contract-specific. They are analogous to functional bugs
in traditional software, which are largely beyond automated bug
finding tools whose effectiveness hinges on uniform and machine
checkable characteristics of bugs. It was also reported that account-
ing bugs are the second-most difficult to find through manual audit-
ing, due to the need of understanding underlying business models.
We observe that a large part of business logic in smart contracts
can be modeled by a few primitive operations like those in a bank,
such as deposit, withdraw, loan, and pay-off, or by their combi-
nations. The properties of these operations can be clearly defined
and checked by an abstract type system that models high-order
information such as token units, scaling factors, and financial types.
We hence develop a novel type propagation and checking system
with the aim of identifying accounting bugs. Our evaluation on a
large set of 57 existing accounting bugs in 29 real-world projects
shows that 58% of the accounting bugs are type errors. Our system
catches 87.9% of these type errors. In addition, applying our tech-
nique to auditing a large project in a very recent auditing contest
has yielded the identification of 6 zero-day accounting bugs with 4
leading to direct fund loss.

1 INTRODUCTION
Blockchains and cryptocurrencies have become an integral part
of our economy. As of the writing of this paper, the global mar-
ket cap for cryptocurrencies reaches $1.19 Trillion USD, with the
top two blockchains being Bitcoin and Ethereum. An important
kind of blockchain-based applications are smart contracts, which
can encompass a wide range of services, from banks to gaming
platforms and marketplaces. Smart contracts follow the DeFi, or
decentralized finance principle. Unlike centralized systems, such as
federal banks, smart contracts operate in a decentralized manner
without a single controlling authority, rendering many novel finan-
cial applications. Similar to traditional software, smart contracts are
developed by programmers and inevitably have bugs. The lucrative
value of exploiting these bugs has made smart contracts one of
the most popular targets of many malicious actors. As of Q2 of
2023, $300 million USD were exploited from 212 security incidents,
suggesting that each exploit costed an average of $1.5 million USD.

Therefore, there is a pressing need to develop techniques to find
smart contract bugs. Existing techniques can be roughly classified
into four categories: static analysis, fuzzers, symbolic execution,
and verification. Static analysis toolsanalyze source code without
actually running the code. They usually transform smart contracts
to various intermediate representations and then search for cer-
tain bug patterns. Fuzzers run contracts against a large number of
inputs and transactions sequences. Symbolic execution analyzes

all possible program paths of a smart contract by performing sym-
bolic computation instead of concrete execution. Verification tools
leverage formal methods to check smart contracts against formal
specifications. These approaches have demonstrated great effec-
tiveness in identifying a broad range of issues. Some bugs such
as reentrancy and integer overflow can hardly survive these tools.
However, most automatic techniques rely on application agnos-
tic oracles, meaning that bugs need to be clearly defined without
considering application specific semantics. Such oracles may be
difficult to acquire for certain kinds of bugs. Verification tools are
capable of detecting a wide spectrum of bugs including those ap-
plication specific. However, they need the developers to provide
application specifications, which may entail substantial manual
efforts. As a result, there are still a large number of bugs that are
beyond existing tools, evidenced by the growing number of attacks.

According to a recent study by Zhang et al. [1] on over 500
exploitable bugs (bugs that can lead to direct fund loss) from 119
real-world smart contract projects, 80% of exploitable bugs are
machine unauditable bugs (MUBs), meaning that they fall outside
of the scope of existing automatic tools. Among them, financial
bugs, which are incorrect implementations of underlying contract
business models, are the most common type of MUBs in projects
before deployment and also the second hardest to find in manual
auditing, due to the need of understanding the most complex parts
of contracts, namely, the business logics. On the other hand, their
impact can be devastating. An example would be the Uranium
Finance Exploit. Due to two extra zeros in an interest calculation,
the contract was exploited for $57 million USD. The bug survived
multiple rounds of manual auditing (by experts).

In this paper, I develop a type-checking tool for accounting bugs
in smart contracts. My insight is that although financial bugs reside
in complex business logic and seemingly lack an application-agnostic
oracle, many manifest themselves as abstract type violations. Abstract
type inference is a technique that can be traced back to the 70’s in the
last century. It aims to abstract higher level semantic information
such as physical units (e.g., seconds and meters) than those denoted
by primitive types in programming languages such as integers
and strings. As such, type systems can be enhanced to check a
much richer set of properties, such as physical unit consistency
in robotic systems. I further observe that although smart contracts
have sophisticated business models, their basic operations are still
analogous to those in a simple bank system, such as deposit, withdraw,
and loan. I hence devise an abstract type system based on these
operations that can infer and check abstract types. In particular, I
model and infer three facets of each variable, which are: token unit
indicating the kind of currency denoted by the variable (analogous
to USD in real life), scaling factor that denotes howmuch the variable
has been scaled in order to simulate floating point computation
that is not supported in smart contract programming languages,
and financial meaning, e.g., if the variable denotes an interest or
a debt. With the rich types, I can check a large set of properties
that shall be uniformly true for various business models, using



ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

1 contract Pools{

2 ...

3 function addLiquidity(address base , address token , address

member) external returns(uint liquidity) {

4 uint addedBase = getAddedAmount(base , ...);

5 uint addedToken = getAddedAmount(token , ...);

6 liquidity = calcLiquidityUnits( addedBase , totalBase ,

addedToken , totalToken , totalLiquidity);

7 liquidity [...][ member] += liquidity;

8 totalBase += addedBase; ...

9 }

10 function calcLiquidityUnits(uint b, uint B, uint t, uint T,

uint P) external view returns (uint){

11 uint part1 = (t * B);

12 uint part2 = (T * b);

13 uint part3 = (T * B) * 2;

14 uint _units = (((P × part1) + part2) / part3);

15 return (_units) / one;

16 }

Figure 1: Buggy Code from Vader [5]

type rules. For instance, values of different token units cannot be
added or subtracted together, similar to how lengths of meters and
inches cannot be added together; amounts scaled by different factors
should not be compared; interest should not be subtracted from debt
but rather adds to it. To use my tool, the user annotates a few global
variables and function parameters with their abstract types. The
annotations are limited and usually clear from project description
and even variable names. Then, my technique automatically infers
the abstract types for other variables and performs type checking.

I implement a prototype ScType based on Slither [2]. I evaluate
the system on 50 real-world contracts from [1] and Code4Rena [3].
It finds 31 bugs with 87.9% recall and 73.8% precision. In contrast,
the state-of-the-art tools could only find 5 of the bugs. The paper
has been accepted to ICSE 2024 (a prestigious research conference
in Software Engineering) to be held in Portugal. My system can be
downloaded and tested at [4].

2 MOTIVATION
We use two real-world accounting bugs to explain the inadequacy
of existing techniques and illustrate our method.

Example I (Lending Contract Vader). Figure 1 contains code
detailing two functions included within the Pools contract from
the Vader project [5]. They have been shortened for demonstrative
purposes. Vader is a lending project that enables the pooling of
funds and offers borrowing functionalities. Users can participate by
purchasing shares from a liquidity pool and utilize these shares as
collateral to access borrowed funds, thereby increasing the pool’s
returns. Within the project, The Pools contract stores functions
related the movement of liquidity in the pool.

The function addLiquidity() in Figure 1 converts a contract’s
recently added base currency and token currency into liquidity,
and adds the liquidity to a certain member’s account. In the con-
tract, the base currency is the default currency of the Vader project,
while the token currency is a special currency used by the liq-
uidity pool, representing a share of the pool. The amount of re-
cently added base currency is computed on line 4 as addedBase,
and the amount of recently added token is computed on line 5
as addedToken. The equivalent amount of liquidity is calculated
through the calcLiquidityUnits() function call on line 6, in

1 contract LibBalances{

2 ...

3 function applyTrade(Position position , Trade trade , uint256

feeRate) internal pure returns ... {

4 int256 signedAmount = trade.amount;

5 int256 signedPrice = trade.price;

6 int256 quoteChange = signedAmount * signedPrice;

7 int256 fee = getFee(trade.amount , trade.price , feeRate);

8
9 int256 newQuote = 0;

10 int256 newBase = 0;

11 if (trade.side == LONG) {

12 newBase = position.base + signedAmount;

13 newQuote = position.quote - quoteChange + fee;

14 } else if (trade.side == SHORT) {

15 newBase = position.base - signedAmount;

16 newQuote = position.quote + quoteChange - fee;

17 }

18 ...

19 }

Figure 2: Buggy Code from Tracer [6]

which totalBase, totalToken, and totalLiquidity denote the
total amount of base currency, total token currency, and total liquid-
ity in the pool. The resulting liquidity is then added to the member
account on line 7 and the total base currency is updated on line 8.

The bug occurs within the function calcLiquidityUnits().
Associating the variables on line 6 to the formal arguments on line
10, we have that b is the recently added base currency, B is the total
base currency, t is the recently added token currency, T is the total
token currency, and P is the current liquidity. The function attempts
to convert the base and token currencies to liquidity on lines 11-15
through the following equation: (𝑃 ∗ (𝑡 ∗ 𝐵) + (𝑇 ∗ 𝑏))/(𝑇 ∗ 𝐵 ∗ 2),
which is incorrect, with the correct equation being: 𝑃 ∗ ((𝑡 ∗𝐵) + (𝑇 ∗
𝑏))/(𝑇 ∗𝐵 ∗2). The understanding of the exact math is unnecessary,
and therefore more details are excluded. As a consequence of this
bug, all conversions of currencies to liquidity are incorrect, losing
the funds of both the contract and the users. This bug was ranked
as High Risk on Code4rena, the highest severity on the platform.

Example II (Trading Contract Tracer). Figure 2 depicts a func-
tion included within the LibBalances library from Tracer [6], which
is a derivative smart contract designed to enable users to trade in
perpetual markets [7]. A derivative contract has its functionalities
based upon derivatives, namely, financial agreements derived from
an underlying asset or financial market. Examples of derivatives
include stocks, options, and futures. In perpetual markets, users
can place long and short trade orders aiming on buying or selling
base tokens using quote tokens, respectively. Users going long earn
money when the price of the base token increases, while users
going short earn money when the price of the base token decreases.
Every user possesses a position that stores the amount of base and
quote tokens that the user has. The LibBalances contract is a li-
brary within the Tracer project that provides basic functionalities
in its perpetual market. In particular, the function applyTrade()
is used to finalize both long and short trades. The amount of base
token associated with the trade is defined as signedAmount on line
4, and the price of the base token is defined in the following line
5 as signedPrice. The amount and price of the base token are
used to calculate the equivalent amount of quote token on line 6 as
quoteChange. Then a fee for the transaction is calculated through
the getFee() function call on line 7.



Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

The short trade handling from line 14 to 16 is correct, and depicts
the user selling the signedAmount in base token and earning the
quoteChange in quote token, minus the fee by the contract. On the
other hand, the long trade handling on lines 11 to 13 is incorrect,
specifically on line 13. Instead of losing the fee meant for the con-
tract, the long trade user gains the fee instead. A likely explanation
for this bug is that the developer confused the contract fee, which
is charged to the user for each transaction, with the funding fee [8]
in perpetual contracts, which is a fee paid from long traders to
short traders periodically when the base token price increases, and
from short traders to long traders when the base token price de-
creases, as an incentive for traders. The consequence of this bug is
that users entering long trades would gain additional quote tokens
on the contract’s loss. This bug was also ranked as High Risk on
Code4rena.

Existing Techniques Are Insufficient. As discussed in section 1,
existing techniques such as static analysis, fuzzing, and symbolic
execution require application agnostic oracles, like those used in
finding reentrancy bugs. Reentrancy occurs when a victim contract
makes a call to an external function before updating state variables,
potentially allowing the external function to call the victim contract
again. This leads to a loop which can cause unexpected behaviors
such as fund draining. It can be detected by finding call cycles using
various analysis: static, dynamic, and symbolic. Such an oracle
does not have to model application specific behaviors. However,
the previous two bugs reside in the core business logic specific
to the contracts. For example, the first bug is coupled with the
obscure math in function calcLiquidityUnits() and the second
bug seems to require understanding perpetual trading and the
unique design of position of the Tracer project. They hence cannot
be detected by the automated tools we have tried (see section 4).

Our Technique. To address the aforementioned limitations, We
propose a novel static analysis tool for detecting accounting bugs
by considering inherent financial meanings of each variable. We
introduce the concept of extended type, which denotes information
such as token unit, scaling factor, and financial type for each vari-
able and enables type propagation. This extended type information
is used to check the correctness and consistency of all operations
within the contract.

We demonstrate the usage of our tool here, starting with the
bug in Figure 1 regarding the function addLiquidity(). Through
type inference and propagation, ScType determines the token/cur-
rency units of addedBase on line 4, addedToken on line 5, and
totalLiquidity on line 5, as 𝑡𝑏𝑎𝑠𝑒 (meaning the token denoted
by the address base), 𝑡𝑡𝑜𝑘𝑒𝑛 , and 𝑒 (𝑡𝑏𝑎𝑠𝑒 , 𝑡𝑡𝑜𝑘𝑒𝑛) denoting a com-
posite expression involving 𝑡𝑏𝑎𝑠𝑒 and 𝑡𝑡𝑜𝑘𝑒𝑛 . More details of such
inference can be found in subsection 3.4. In addition, due to line 8,
totalBase has a token unit of 𝑡𝑏𝑎𝑠𝑒 . Similarly, totalToken has a
unit of 𝑡𝑡𝑜𝑘𝑒𝑛 . On line 6where the function calcLiquidityUnits()
is invoked, our tool can infer that the parameters have token units
of: {𝑡𝑏𝑎𝑠𝑒 , 𝑡𝑏𝑎𝑠𝑒 , 𝑡𝑡𝑜𝑘𝑒𝑛 , 𝑡𝑡𝑜𝑘𝑒𝑛 , 𝑡𝑒 = 𝑒 (𝑡𝑏𝑎𝑠𝑒 , 𝑡𝑡𝑜𝑘𝑒𝑛)}. This informa-
tion is then propagated to the calcLiquidityUnits() function
body starting on line 10. Hence on line 11, part1 = t ∗ B, and
therefore has unit [𝑡𝑏𝑎𝑠𝑒 ∗ 𝑡𝑡𝑜𝑘𝑒𝑛]. On line 12, part2 = T ∗ b, and
has unit [𝑡𝑏𝑎𝑠𝑒 ∗ 𝑡𝑡𝑜𝑘𝑒𝑛]. On line 13, part3 = T ∗ B ∗ 2, and therefore
has unit [𝑡𝑏𝑎𝑠𝑒 ∗ 𝑡𝑡𝑜𝑘𝑒𝑛] as well. However, the issue arises on line 14

Table 1: Popular DeFi Project Categories

Project Types Brief Summary Typical Operations

Yield & Yield
Aggregator

Yield projects allow users to
deposit funds to be used as
collateral in other projects, where
the earnings are returned.

stake, withdraw,
draw, invest,
reinvest

Dexes Exchange projects allow users to
trade one currency for another, or
for shares in a pool.

swap, add/remove
liquidity

Lending Lending projects allow users to
borrow currency in exchange for a
collateral.

lend, repossess,
repay loan

Services Service projects facilitate services
or functions such as games and
wallets.

deposit, withdraw,
buy, sell

Derivatives Derivative projects are based upon
simulating real-world derivatives
such as stocks, options, and futures.

trade, liquidate,
withdraw, deposit

when the calculation of _units = (((P × part1) + part2)/part3)
is performed. This calculation is split into three separate steps: the
first calculation being TMP_0 = P × part1, the second calculation
being TMP_1 = TMP_0 + part2, and finally, _units = TMP_1/part3.
According to the first calculation, TMP_0 has unit [𝑡𝑏𝑎𝑠𝑒 ∗𝑡𝑡𝑜𝑘𝑒𝑛 ∗𝑡𝑒 ],
so during the second calculation when TMP_0 is added to part2,
which has unit [𝑡𝑏𝑎𝑠𝑒 ∗ 𝑡𝑡𝑜𝑘𝑒𝑛], there is a type mismatch, and thus
our tool reports an error. In contrast, the fixed version P*((t*B) +
(T*b))/(T*B*2) can be type-checked.

For the bug in Figure 2, the parameters of applyTrade() have
the following initial extended type information (from its documen-
tation): trade.amount is a 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 , denoting the amount some
account owns, trade.price is a 𝑃𝑟𝑖𝑐𝑒 , denoting trading price be-
tween two products, feeRate is a 𝐹𝑒𝑒 , denoting charge to an ac-
count by the contract, and position.quote is a 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 . The types
of other variables are then inferred and checked. On line 4, the finan-
cial meaning of signedAmount is determined as 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 due to the
assignment. On line 6, quoteChange is typed as 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 similarly.
On line 7, fee is typed to 𝐹𝑒𝑒 by inter-procedural analysis. Then
on line 13, position.quote - quoteChange is typed to 𝐵𝑎𝑙𝑎𝑛𝑐𝑒

as it is the difference of two balances. However, the whole expres-
sion position.quote - quoteChange + fee cannot be typed as
𝐵𝑎𝑙𝑎𝑛𝑐𝑒 + 𝐹𝑒𝑒 is illegal. This is because fee is a charge and should
never be added to a balance. In contrast, line 16 can be typed.

3 DESIGN
3.1 A Conceptual DeFi Model

We studied a large number of DeFi projects (i.e. a total of 113)
collected in [1]. The majority of such projects have already been
deployed in the real-world, and there are many of which are fairly
complicated, e.g., Tigris [9] and Biconomy [10]. We have a key
observation: many of these projects can be considered as mutations
of a bank. Banks are the oldest financial institution, and their key
functionality is to collect liquidity from deposits, distribute the liq-
uidity through loans, collect interest (and possibly collateral as well
through liquidation) from those loans, and remit the profits back to
the deposits. Modern DeFi projects often have fairly sophisticated
business models (e.g., derivative contracts). However, their essence
is still collecting unused liquidity and re-distributing for profits. We
hence propose a bank-like conceptual model to describe some fun-
damental operations of DeFi projects, allowing us to derive a set of



ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

1 contract DeFiModel {

2 IERC20 public T; // contract token

3 IERC20 public T0; //asset token

4 uint public fee_rate;

5 uint public interest_rate;

6 uint public earning;

7 uint public totalSupply;

8 unit public totalDebt;

9 unit public price;

10 mapping(address => uint) public balance;

11 mapping(address => uint) public debt;

12 mapping(address => uint) public collateral;

13
14 function deposit(uint amount) public { // deposit T0 for T

15 unit share= swap_T0_4_T(amount);

16 uint fee= update_fee(fee_ratio , totalSupply , totalDebt);

17 balance[msg.sender ]+= share;

18 balance[msg.sender]-=fee;

19 totalSupply +=share -fee;

20 earning +=fee;

21 }

22 function withdraw(uint share) public {

23 ... //fee computation

24 balance[msg.sender]-=share;

25 balance[msg.sender]-=fee;

26 earning +=fee;

27 totalSupply -=share+fee;

28 return swap_T_4_T0(share);

29 }

30 function accounting () public {

31 uint dividend = calc_dividend(earning , totalSupply ,

balance[msg.sender ]);

32 earning -= dividend;

33 balance[msg.sender ]+= dividend;

34 uint interest = calc_interest(debt[msg.sender ]);

35 debt[msg.sender ]+= interest;

36 earning += interest;

37 }

38 function swap_T0_4_T(uint amount) public {

39 price=IERC20.balanceof(T)/IERC20.balanceOf(T0);// T0*T=k

40 return amount * price;

41 }

42 function loan(uint share , uint collateral) public {

43 ... //fee computation

44 new_collateral=collateral[msg.sender ]+ collateral;

45 new_debt = debt[msg.sender ]+ share + fee;

46 if (new_debt *100>= new_collateral *75) return;

47 collateral[msg.sender] = new_collateral;

48 debt[msg.sender] = new_debt;

49 totalSupply - = share;

50 totalDebt + = share + fee;

51 earning +=fee;

52 }

53 function payoff (uint share) public {

54 ... //fee computation

55 debt[msg.sender]- = share -fee;

56 totalDebt - =share -fee;

57 totalSupply + = share -fee;

58 earning +=fee;

59 }

60 function liquidate (address account) require owner public {

61 if (debt[account ]*100< collateral *75) return;

62 totalSupply += debt[account ];

63 earning += collateral[account]-debt[account ];

64 totalDebt -= debt[account ];

65 debt[account] = 0; collateral[account] = 0;

66 }

67 }

Figure 3: Bank-like Conceptual Model for DeFi Contracts

key properties. In the following, we first describe the conceptual
model and then explain how existing DeFi projects can be consid-
ered as instantiations of the model. To avoid additional denotation
overhead, the model is composed using a Solidity-like language

in Figure 3. It is worthy noting that the code is not intended to
be complete or sound, but rather provides a vehicle for the later
discussions of financial properties.
State Variables. The global variables in lines 2 - 12 denote a num-
ber of key book-keepings that a bank has to maintain. Later in this
section, we will show that they become the extended types in our
system. In particular, T on line 2 is the base token of the bank, denot-
ing the currency of bank, similar to the base currency in the Pools
contract in Figure 1, while T0 on line 3 represents a universally uti-
lized currency, anaglogous to USDC or ETH in smart contracts and
USD in real life. Variable fee_rate is a ratio used in fee calculation.
Usually, fee charged to the customer that initiates a transaction
is calculated as a percentage of the transaction. Interest_rate is
the ratio used to calculate interest of debt. Line 6 defines the bank’s
earnings, which is typically incremented through fee and interest
accmulations. Variable totalSupply denotes the total amount of
asset in the contract-specific token T. Similarly, totalDebt on line
8 represents the total amount of debt in T token that users have
accrued. On line 9, price represents a conversion rate between T0
and T. On lines 10-12, we define a set of mappings that are used to
store information specific to each user, including balance, debt,
and collateral.
Deposit. Lines 14 - 21 denote how a customer deposits asset, which
may be loaned to others to harvest interest. Note that msg.sender
is a standard Solidity term that denotes the user, namely, the sender
of the transaction message (i.e., function call). It is usually called
with a deposit amount in a universal currency (i.e., amount in T0),
analogous to the user depositing US dollars. The amount is first
converted to a share of the overall asset in the bank on line 15, in the
bank’s currency T. Intuitively, it denotes what portion of the bank’s
overall asset is owned by the user. On line 16, fee_ratio and then
fee are updated (typically based on the utilization of asset). Then
the user balance, total asset, and earnings are updated. Note that the
fee is taken from the user and saved to the bank. As we will show
later, many operations in smart contracts share a similar nature
to the deposit function, although their implementations may be
orders of magnitude more complex. Hence, if we can type variables
in smart contracts to balance, fee, total supply etc., like the variables
in our function. We can check properties such as fee should be taken
from balance, an invariant across implementations.
Withdraw. Lines 22 - 29 define how a user withdraws assets. It is
almost symmetric to deposit(). Note that the fee is taken from
the user’s balance.
Accounting. Lines 30 - 37 denote the internal regular accounting
of the bank, determining how balances earn dividends and debts
increase with accrued interest. In particular, dividend calculated
on line 31 denotes the distribution of bank’s earnings to the user
(lines 32 and 33). Interest calculated on line 34 increases the
user’s debt on line 35 and the bank’s earnings. Note that the func-
tions calc_dividend() and calc_interest() (including function
update_fee() on line 16) are not defined as they denote bank-
specific protocols. When we instantiate the conceptual model to
various smart contracts, different contracts have their own innova-
tive and project-specific definitions of those functions.
Swap. Lines 38 - 41 show how an amount of the universal coin
T0 is converted to the base token T. First, the price of T in terms



Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

of T0 must be computed. In finance, a rule is typically followed
to determine the price of an asset 𝑥 when trading it with another
asset 𝑦. That is, the product of total amounts of 𝑥 and 𝑦 on market
remains unchanged by the trade [11]. To ensure this invariant, the
price of trading 𝑥 for 𝑦 is the total amount of 𝑦 divided by the total
amount of 𝑥 . Intuitively, if 𝑥 is traded for 𝑦, 𝑥 amount decreases
and 𝑦 amount increases, 𝑥 shall become more expensive, and vice
versa. Hence, the price of token T in terms of T0 is total T divides
total T0, demonstrated on line 39.
Loan. Lines 42 - 52 show how a user initiates a loan provided an
amount of collateral. The loan amount share (in T) and the collat-
eral amount collateral are given on line 42. Line 46 checks if the
total debt is currently lower than 75% of the total collateral. If not,
the user is not allowed to borrow. If the loan is granted, the user’s
collateral and debt are updated on lines 47-48. The totalSupply
of the T token is decreased by the loaned amount on line 49, and
the total debt totalDebt is increased by the loaned amount and
the fee on line 50. Finally, the earnings are incremented on line 51.
Payoff. Paying off debt is largely symmetric to taking a loan, except
that it does not need to check the health of account. Note that the
fee is added to the debt (the same as in loan()).
Liquidate. Lines 60 - 66 show how an account’s collateral can be
liquidated if the debt is not paid off in time. The require owner
modifier on line 61 means that only the bank owner can perform
this operation. During liquidation, the health of the account is first
checked on line 61 to decide if it should be liquidated. If so, the
collateral is split to two parts, the first part paying off the debt and
going to the total supply, and the second part goes to the bank’s
earnings. Then the debts and collateral are reset, as referenced on
lines 64 and 65, respectively.

3.2 Instantiation of the Conceptual Model to
DeFi Contracts

In the following section, we reason how our model can be in-
stantiated to various kinds of smart contracts. According to De-
fillama [12], a DeFi analytics platform, there are 13 different types of
smart contracts. We take the 5 most popular project types (by [13]),
namely, yield and yield aggregators, lending, dexes, services, and
derivatives, and discuss how our model can be used to model their
basic functionalities. The contract categories and their typical op-
erations are listed in Table 1.
Yield and Yield Aggregators. These projects allow users to stake
funds into smart contracts, and then use the aggregated funds to
generate yield as profit. They rely on strategies, which are auto-
mated investment strategies to earn rewards, incentives, or interest
in other smart contracts. One example of a yield strategy would
be contributing funds to a liquidity pool in another smart contract
and receiving fees from transactions involving that pool. Once the
yield strategy ends, the yield is then made available to withdraw,
with any unclaimed yield being used to reinvest in the user’s ac-
count. Some examples of yield and yield aggregators include Convex
Finance (TVL1 $3.7b) and Sushi BentoBox (TVL $76.2m).

Typical functions within these projects include: stake, withdraw,
invest, and reinvest. Observe that there are almost direct mappings

1TVL, or Total Value Locked, represents the amount of capital in a smart contract.

of these operations to those in the bank-like model. For example,
stake corresponds to deposit(), and invest and reinvest are just spe-
cial forms of withdraws as they entail reducing the user’s balance
and sending the reduced amount out (e.g., to a strategy account).
As such, we can check behavior correctness by making sure the
bookkeepings in those functions follow a similar fashion to those
inside deposit() and withdraw() in Figure 3. The Vader project
in section 2 is such an example. Function addLiquidity() in Fig-
ure 1 corresponds to deposit() in Figure 3. Observe that the base
and token in the former correspond to T0 in the latter (as they are
the tokens the user deposits) and the liquidity token corresponds
to T. The invocation to calcLiquidity() on line 6 in Figure 1
corresponds to the swap function call on line 15 in Figure 3. As
such, we can check balances are correctly updated and fee is prop-
erly charged. We want to point out that the above discussion is
conceptual, and ScType does not require explicitly constructing
such correspondences. Instead, they are implicitly encoded by our
extended types. More will be discussed in our type system section.

Dexes. These projects host an exchange market between two cur-
rencies. Dexes support two types of users: liquidity suppliers and
traders. Suppliers deposit amounts of both token types in order to
grow the contract’s supply pool, receiving a portion of the trading
fees as income. Traders deposit one type of token into the pool,
and receive the corresponding amount of the other token, minus
some fee. Examples of deployed dex projects include Uniswap (TVL
$3.83b) and Balancer (TVL $1.023b). Typical functions in Dexes
include swap, addLiquidity, and removeLiquidity. The last two cor-
respond to deposit() and withdraw() of our model, and swap is
equivalent to depositing in one token, swapping to another token
using a function similar to swap_T0_4_T() in our model, and then
withdrawing in the later token.

Lending. Lending projects allow users to loan money, placing a
collateral at stake. These projects are directly comparable to banks.
Some of the most well known lending projects include AAVE (TVL
$5.867b) and Compound Finance (TVL $2.282b). Lending projects
support functions such as lend, liquidate, and repay.

Services. These projects facilitate some services, such as a wallet
and a game. They regulate the backend flow of funds of their corre-
sponding applications. Popular service projects include Instadapp
(TVL $2.082b) and DefiSaver (TVL $103m). Typical functions of
service projects include: deposit, withdraw, buy, and sell. They can
be expressed with operations in our bank model.

Derivatives. Derivative contracts (e.g., futures and options) allow
users to speculate on price movement, interest rates, and other
financial variables without directly owning the underlying asset.
Some popular derivative projects include GMX (TVL $583.22m) and
dYdX (TVL $357.21m). Their typical functions include: trade, bid, liq-
uidate, withdraw, and deposit. A trade function, like applyTrade()
in Figure 2, can be modeled by depositing one token, swapping
to another token, and then withdrawing the later token. As such,
checking the property of fee in this procedure, namely, fee should al-
ways be at the cost of user, regardless buy, sell, deposit, or withdraw,
identifies the bug in Figure 2.



ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

1 usdcAmount = USDC.balance ();

2 scaledUSDCAmount = USDC.balance () * 10^12;

3 totalAmount = usdcAmount + scaledUSDCAmount;

Figure 4: Bank Like DeFi Model

<𝑃𝑟𝑜𝑔𝑟𝑎𝑚> 𝑃 F 𝑆

<𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡> 𝑆 F 𝑆1;𝑆2| 𝑥 := 𝑣 | 𝑥 := 𝑦 | 𝑥 := 𝑎 |
𝑥 := 𝑦 op 𝑧 | 𝑥 := IERC20(𝑦1 ) .balanceOf(𝑦2 ) |
IERC20(𝑦1 ) .transfer(𝑦2, 𝑥 ) |
if(𝑥 ) 𝑆1; else 𝑆2; | while(𝑥 ) 𝑆 ;

<𝑉𝑎𝑟> 𝑥, 𝑦, 𝑧 <𝑉𝑎𝑙𝑢𝑒> 𝑣 ∈ {1, 5, 1018, ...} <𝐴𝑑𝑑𝑟𝑒𝑠𝑠> 𝑎

<𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛> ⊲⊳ ∈ {>,<,==, ! =, ...} <𝐵𝑖𝑛𝑜𝑝> 𝑜𝑝 ∈ {+, ×, ⊲⊳ ...}

Figure 5: Language

3.3 Token Unit and Scaling Factor
Besides the financial meanings, our type system also captures the
implicit token units and scaling factors for individual variables.

Token Units. On the blockchain, the majority of currencies used
are tokens. Tokens have monetary value, and can be exchanged for
real world currencies such as USD. Tokens most commonly used
include USDC (USDCoin) and ETH (Ethereum). DeFi projects utilize
these tokens, or implement their own tokens in order to supply
liquidity and fuel their economies. In Solidity, these tokens are
handled as integers, despite potentially being of different currencies.
This is because as of current, programming languages lack built-
in models for handling (monetary) units. For example, amounts
of USDC and ETH are both represented using the same primitive
integer type in Solidity. This may potentially allow vulnerabilities
to arise when such amounts are incorrectly handled. Just like how
meters and feet cannot be directly compared, even though they are
both measurements of length, directly comparing two amounts of
different token units should not be allowed either. To prevent such
problems, each variable has its token unit in our type system.

Scaling Factor. In Solidity, using a scaling factor is a common
technique to handle decimal numbers without using floating-point
arithmetic, which is not supported in the language. A scaling factor
is a power of 10 that is multiplied to an actual token amount. Many
tokens have a default scaling factor; the USDC token has a factor
of 106. This means 1 USDC (equivalent to 1 USD in real life) is
internally denoted by a value of 106. The WETH token has a scaling
factor of 1018. Hence, in order to compute the price between USDC
and WETH, USDC needs to be scaled by a factor of 1012 for the
scaling factors to be equal. However, similar to token units, the
onus of using scaling factors properly is completely on developers,
who likely make mistakes such as forgetting to multiply/divide
by the right scaling factor. We demonstrate this in Figure 4. An
amount of USDC, usdcAmount is computed on line 1. Recall that
the default scaling factor of USDC is 106. On line 2, a variable
scaledUSDCAmount is set to the USDC amount scaled by a factor of
1012, making the factor of scaledUSDCAmount 1018. Finally, these
two amounts are added on line 3. This should not be allowed, since
the two tokens have different scaling factors. However, Solidity
compiles and runs the code without issue. Therefore we model
scaling factors explicitly in our type system to prevent such errors.

<𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑇 𝑦𝑝𝑒> 𝜏 ::=< 𝑓 , 𝑠,𝑢, 𝑎 >

<𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑇 𝑦𝑝𝑒> 𝑓 ∈ {RawBal, AccBal, NetBal, T-Supply,
Fee, Debt,Interest, Dividend, Price, -,

...}
<𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓 𝑎𝑐𝑡𝑜𝑟> 𝑠 ∈ Z ∪ {−}
<𝑇𝑜𝑘𝑒𝑛 𝑈𝑛𝑖𝑡> 𝑢 := 𝑢 × 𝑢 | 𝑢 ÷𝑢 | 𝑡𝑎 | 𝑡𝑡ℎ𝑖𝑠 | −

Figure 6: Extended Types

3.4 Type System
Definitions. Figure 5 presents a language to facilitate discussion.
Although ScType supports the complex syntax of Solidity, we use
a simplified language for discussion. In particular, we represent
variables of all types as Var. Only variables with primitive types
of integers and addresses will be typed by ScType, since other
primitive types such as boolean and string do not provide mean-
ingful information for our purpose. We also define a selected set of
statements within Statement. These statements are where most
of the type checking and inference take place. The first three
statements are assignments: 𝑥 := 𝑣 , 𝑥 := 𝑎, and 𝑥 := 𝑦 rep-
resenting Value, Address, and Variable assignments, respectively.
Following are binary operation statement 𝑥 := 𝑦 𝑜𝑝 𝑧, and two
primitive function calls, namely, 𝑥 := IERC20(𝑦1).balanceOf(𝑦2)
and IERC20(𝑦1) .transfer(𝑦2, 𝑥). The first one type-casts 𝑦1 to an
ERC20 token, intuitively some kind of currency, and then retrieves
the balance of an account denoted by 𝑦2, which contains an address.
The second one transfers 𝑥 amount of 𝑦1 token from the user that
initiates the transaction (i.e., msg.sender) to an address denoted by
𝑦2. We model these functions as they directly disclose token units
and financial types. Finally, we include statements representing
conditionals and loops. Although our typing system handles other
statements such as function calls, they are handled in a standard
way, e.g., propagating types through parameters, and hence elided.
Extended Types. Figure 6 represents the types that we have de-
veloped for our system. In ScType, each variable is typed with a
tuple of four: Financial Type, Scaling Factor, Token Unit, and Address.
Financial type represents the monetary implication of the vari-
able. Following the bank-like model in Figure 3, we list part of the
supported financial types: raw balance (RawBal) denoting balance
before accrual, balance after fee charged (NetBal), balance after
dividend accrual (AccBal), total supply (T-Supply), transaction fee
(Fee), debt, interest, and exchange price. The symbol ‘-’ denotes
not-applicable, meaning the variable has no monetary implication.
We elide some supported types such as collateral for discussion
simplicity. Scaling factor represents the exponent of 10 that the
variable is scaled by. Token unit represents the token unit of the
variable. Token units are expressions of either an existing currency
denoted by address 𝑎, represented by 𝑡𝑎 , the currency of the current
contract, represented by 𝑡𝑡ℎ𝑖𝑠 , and their product or ratio, which are
typically used in price computation. In contrast, sum and difference
(of different token units) are not legitimate. The address aspect of
the type denotes the address that a variable may hold.
Type System.Our type system is based on single-static-assignment
representations by Slither [2] and flow-sensitive. In other words,
different left-hand-side appearances of a variable are renamed and
hence typed separately. In addition, it is field-sensitive and context-
sensitive, although not directly reflected in our later discussion
of type rules. It types individual public/external functions in a



Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

(𝑅1)
𝑥 := 𝑎 : <−, −, −, 𝑎> (𝑅2)

𝑥 := 𝑣 : <−, 𝑔𝑒𝑡𝑆𝑐𝑎𝑙𝑒𝑉 (𝑣), −, −>

(𝑅3)
𝑦 : 𝜏

𝑥 := 𝑦 : 𝜏

(𝑅4)
𝑦1 : 𝜏1 𝑦2 : 𝜏2 𝜏1 .𝑢 = 𝜏2 .𝑢 𝜏1 .𝑠 = 𝜏2 .𝑠

𝑥 := 𝑦1 + 𝑦2 : <𝜏1 .𝑓 ⊕ 𝜏2 .𝑓 , 𝜏1 .𝑠, 𝜏1 .𝑢, −>

(𝑅5)
𝑦1 : 𝜏1 𝑦2 : 𝜏2 𝜏1 .𝑢 = 𝜏2 .𝑢 𝜏1 .𝑠 = 𝜏2 .𝑠

𝑥 := 𝑦1 − 𝑦2 : <𝜏1 .𝑓 ⊖ 𝜏2 .𝑓 , 𝜏1 .𝑠, 𝜏1 .𝑢, −>

(𝑅6)
𝑦1 : 𝜏1 𝑦2 : 𝜏2

𝑥 := 𝑦1 × 𝑦2 : <𝜏1 .𝑓 ⊗ 𝜏2 .𝑓 , 𝜏1 .𝑠 + 𝜏2 .𝑠, 𝜏1 .𝑢 × 𝜏2 .𝑢, −>

(𝑅7)
𝑦1 : 𝜏1 𝑦2 : 𝜏2

𝑥 := 𝑦1 ÷ 𝑦2 : <𝜏1 .𝑓 ⊘ 𝜏2 .𝑓 , 𝜏1 .𝑠 − 𝜏2 .𝑠, 𝜏1 .𝑢 ÷ 𝜏2 .𝑢, −>

(𝑅8)
𝑦1 : <−, −, −, 𝑎1> 𝑦2 : <−, −, −, 𝑎2>

𝑥 := IERC20(𝑦1 ) .balanceOf(𝑦2 ) : <RawBal, 𝑔𝑒𝑡𝑆𝑐𝑎𝑙𝑒𝐴(𝑎1 ), 𝑡𝑎1 , −>

(𝑅9)
𝑦1 : 𝜏1 𝑦2 : 𝜏2 𝜏1 .𝑢 = 𝜏2 .𝑢 𝜏1 .𝑠 = 𝜏2 .𝑠

𝑥 := 𝑦1 ⊲⊳ 𝑦2 : <−, −, −, −>

Figure 7: Type Rules

⊖ RawBal NetBal AccBal T-Supply Fee Debt Dividend

RawBal RawBal ✗ ✗ T-Supply ✗ Debt ✗

NetBal ✗ NetBal ✗ T-Supply ✗ Debt ✗

AccBal ✗ ✗ AccBal T-Supply ✗ Debt ✗

T-Supply ✗ ✗ ✗ T-Supply ✗ ✗ ✗

Fee NetBal ✗ AccBal ✗ Fee ✗ Dividend
Debt RawBal NetBal AccBal ✗ ✗ Debt ✗

Dividend ✗ ✗ ✗ T-Supply Fee Debt Dividend

Table 2: Definition of Operator ⊖ (top_row ⊖ left_column)

getScaleV (𝑣) =
{

𝑛 𝑣 = 10𝑛
− otherwise

getScaleA(𝑎) = dictionary lookup of token 𝑎’s scaling factor

Figure 8: Helper functions used in type rules

contract one-by-one. Typing one such function entails typing all the
function directly/indirectly invoked as well. Some global variables
and function parameters may not have their types automatically
inferred, usually when such information is only implicitly assumed
as preconditions. In such cases, ScType prompts the user for their
types. We call such user provided information type annotations,
which are typical in static analysis and symbolic analysis. They can
be extracted from documentation, comments, and even variable
names. In section 4, we will show such manual efforts are limited.
In the following discussion, we assume type annotations are in
place for simplicity.

Figure 7 presents our rules for type inference and checking.
Within our rules, 𝑦 : 𝜏 represents variable 𝑦 having an extended
type 𝜏 . A statement 𝑥 := ... : 𝜏 means that 𝜏 is the resulting type of
the statement that will be propagated to 𝑥 . Special operations ⊕,
⊖, ⊗, and ⊘ represent the resulting financial meanings of addition,
subtraction, multiplication, and division operations, respectively.
We have included the definition of ⊖ in Table 2 as a reference. The
definitions of remaining operators have been excluded for space,
and can be found in our supplementary material.

Rule 𝑅1 specifies that when assigning an address to a variable,
the corresponding extended type 𝜏 tracks the address, which is later
propagated to other places/variables through copy statements. Rule

𝑅2 demonstrates that when assigning a value to a variable, 𝜏 records
the scaling factor of the value, obtained through the helper function
getScaleV() in Figure 8. Rule 𝑅3 specifies that in a copy statement,
the left-hand-side variable inherits its type from the right-hand-side.
Rules R4-R5 specify the rules for addition and subtraction. They
are in a similar form. For example, rule 𝑅5 specifies when a variable
𝑦1 typed to 𝜏1 is subtracted by 𝑦2 typed to 𝜏2, their token units and
scaling factors must be the same, and their financial types must be
legitimate for subtraction as well (according to Table 2). In Table 2,
the top row represents the minuend, the left column represents the
subtrahend, and the intersection cell represents the result. A legal
subtraction, such as RawBal - Fee yields NetBal (row 6 and column
2), which cannot be further subtracted by a fee (row 6 and column
3), indicated by the ✗. The intuition of the table can be derived
from our DeFi model. For example, Debt-Fee is not allowed as fee
shall increase debt, not decrease (see loan() in Figure 3). Some
may wonder why we allow RawBal-Debt because paying off debt
should be in the form of Debt-RawBal. The reason is that many
DeFi projects allow users to over-pay their debts with the extra
going to their balances. The extra is computed by RawBal-Debt.
Rules 𝑅8 and 𝑅9 are for multiplication and division. For these two,
we do not check consistencies of token units and scaling factors
as multiplication and division of different tokens (with different
scaling factors) are often necessary in computing trading/swapping
price (see swap_T0_4_T() in Figure 3). The definitions of ⊗ and
⊘ are in our supplementary material. Specifically, we only allow
multiplication/division within the same type of balance, not across.
For example, RawBal/RawBal is allowed but RawBal/NetBal is not,
as the ratio of the latter serves no purpose. Rule 𝑅8 specifies the
inference rule for balanceOf(...). The conditions are that both 𝑦1
and 𝑦2 must be of the address type. The resulting variable 𝑥 has the
type <RawBal, getScaleA(𝑎1), 𝑡𝑎1 , ->, representing that it is a raw
balance, has a scaling factor that is looked up from a dictionary,
which is easy to construct with one-time effort as there are only a
few default scaling factors for popular tokens, and the token unit
𝑡𝑎1 . The rule for transfer(...) is similar and elided. Rule 𝑅9 specifies
that for comparison operations, the token units and scaling factors
must be consistent. The resulting type is a null type, since 𝑏𝑜𝑜𝑙𝑒𝑎𝑛
values do not have financial meaning. The rules for conditionals
and loops are standard and elided.

Examples. Recall the Vader bug in Figure 1. Variables addedBase
and addedToken on lines 4 and 5 are typed to <RawBal,0,𝑡𝑏𝑎𝑠𝑒 ,->
and <RawBal, 0, 𝑡𝑡𝑜𝑘𝑒𝑛 , ->, respectively, through the function calls
of getAddedAmount(...), which is a wrapper of balanceOf(...).
In other words, the two are raw balances with different token units.
The addition on line 8 allows typing totalBase to token unit 𝑡𝑏𝑎𝑠𝑒 .
Similarly, totalToken has unit 𝑡𝑡𝑜𝑘𝑒𝑛 and totalLiquidity has
unit 𝑡𝑒 , which is an expression of 𝑡𝑏𝑎𝑠𝑒 and 𝑡𝑡𝑜𝑘𝑒𝑛 . These 5 variables
are the parameters passed to the calcLiquidityUnits() function.
Through rule 𝑅6 for multiplication, variables part1, part2, and
part3 all have type <RawBal , 0, 𝑡𝑡𝑜𝑘𝑒𝑛 × 𝑡𝑏𝑎𝑠𝑒 ,->. ScType reports
an error during the 3-part calculation of unit on line 14. Specifically,
the first part, TMP1 = P * part1 is typed to <RawBal , 0, 𝑡𝑒×𝑡𝑡𝑜𝑘𝑒𝑛×
𝑡𝑏𝑎𝑠𝑒 ,-> with no issue. The second part TMP2 = TMP1 + part2 is
problematic by rule 𝑅4 since there is a unit mismatch between TMP1
and part2, with the unit 𝑡𝑡𝑜𝑘𝑒𝑛 × 𝑡𝑏𝑎𝑠𝑒 .



ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

For the example in Figure 2, signedAmount and signedPrice are
typed to <RawBal , 0, 𝑡𝑏𝑎𝑠𝑒 ,−> and <Price , 0, 𝑡𝑞𝑢𝑜𝑡𝑒 ÷𝑡𝑏𝑎𝑠𝑒 ,-> from
previous assignments not shown here. Similarly, position.base
and position.quote are typed to <RawBal , 0, 𝑡𝑏𝑎𝑠𝑒 ,-> and <RawBal
, 0, 𝑡𝑞𝑢𝑜𝑡𝑒 ,->; quoteExchange is typed to <RawBal , 0, 𝑡𝑞𝑢𝑜𝑡𝑒 ,-> by
rule 𝑅6. The code for function getFee() is not shown, but its return
type (and hence the type offee) is <Fee , 0, 𝑡𝑞𝑢𝑜𝑡𝑒 ,->. The problem-
atic statement is on line 13, within the true branch. The statement
is split into two separate operations (by Slither). The first operation
TMP1 = position.quote-quoteChange type-checks and results in
<RawBal , 0, 𝑡𝑞𝑢𝑜𝑡𝑒 ,-> by rule 𝑅5. The second operation newQuote =
TMP1 + fee does not type-check as Fee cannot be added to RawBal
(Table 1 in the supplementary material).
Limitations of Our Type System. Our system is based on the
DeFi model in Figure 3, which only abstracts parts of the business
models of DeFi projects. It is not quantitative such that our type
system cannot detect pure calculation errors. However, our results
show that more than half of accounting errors are type errors. In ad-
dition, there may be different designs even for the basic operations
in Figure 3. For example, interest may not be directly added debt,
but rather separately accounted. However, these design choices
do not cause problems in our type rules. For instance, we allow
interest to be added to debt (Table 1 in supplementary material) but
we do not force such addition.

4 EVALUATION
We implement ScType in around 3,000 lines of Python code on
Slither [2]. It consists of a type annotation parser, a type propa-
gation system, and a type checking system. It is inter-procedural
and cross-contract, meaning that it may automatically include func-
tions from other contracts in analysis (if their code is available).
It also handles arrays and object fields. To reduce the overhead of
supporting context-sensitivity, it caches analysis results for each
function. Details are elided. We aim to address the following re-
search questions.

• RQ1.How effective is ScType in disclosing accounting bugs?
• RQ2. How efficient is ScType?
• RQ3.What are the categories and distributions of accounting
bugs?

• RQ4.What is the capacity of our type system?
• RQ5. How effective is ScType in finding zero-days?

The system and the benchmarks are provided as supplementary
material and will be released upon publication.

4.1 Experimental Setup
Benchmark. In the controlled experiments, we utilize the smart
contract vulnerabilities collected by Zhang et al. in [1], which de-
tails 513 real-world bugs from 113 projects. Of which, 72 were
categorized as accounting bugs. We preclude 15 of them due to the
inability to be loaded by Slither or missing code. The detailed list
of remaining bugs is in Table 3, following their chronical order of
being reported. While a project may have multiple contracts, we
run ScType on those in which accounting bugs were reported.
Baselines. We ran a few state-of-the-art static analyses on the
set of bugs, such as Smartian [14], Slither [2], Oyente [15], and
Mythril [16]. However, they could not find these accounting bugs.

It is expected as these tools are built for other types of bugs. The
results are also consistent with what was reported in [1].
Initial Type Annotations. Although ScType can automatically
infer certain type information such as some token units and scaling
factors, it may need the user to provide initial information such
as financial types for some global variables and some function
parameters (if they cannot be inferred). ScType prompts the user
for such information when it is missing and cannot be resolved
by type inference. Users’ efforts are one-time and recorded in a
type file for reuse. The information is clear from project description
and code comments in most cases, and hence the required user
efforts are limited, as demonstrated by the number of annotations
in Table 3 (in comparison to the number of functions type-checked).
More automation is certainly feasible. For example, financial types
can be inferred from variable names in many cases or using mining
techniques such as [17, 18]. We leave it to our future work.

The experiments are conducted on a machine with AMD Ryzen
3975x and 512GB RAM.

4.2 RQ1: Effectiveness
The results from running ScType on our benchmark are shown in
Table 3. The projects are listed in the leftmost column, followed by
a short summary of each project. The number of annotations made
is shown in the column starting with A+. The number of functions
checked is listed under the Func checked column, which includes
functions that are called within other functions. The TW column
indicates the number of type warnings by ScType. Singular true
positives (TP) and false positives (FP) may both generate multiple
warnings (due to the cascading effect of a type error), hence the
discrepancy between the warnings amount and the sum of true and
false positive amounts. The true positives are listed under the TP
column. Accounting bugs that are not type errors (and hence out
of scope for ScType) are listed under the NTE, or Not-Type-Error
column. Type bugs that are not able to be found with the current
system are listed under the MTE, or Missed-Type-Error column.
Observations. In total, we run our tool on 29 projects, covering
57 accounting bugs. ScType reports 29 TPs and 11 FPs. The FPs
are mainly due to the path insensitive nature of the tool. We will
illustrate with a case later. Even though ScType cannot detect 28
of the 57 bugs, our inspection shows that 24 out of those 28 bugs
are not type errors, belonging to other error categories such as
pure math errors. Therefore, ScType is able to successfully detect
29/(29+4)=87.9% of accounting type errors. We argue that these
results demonstrate the promise of ScType as an attempt to ad-
dressing accounting bugs.

False positives. We manually inspect the false positives. We
find that the lack of path sensitivity is a major reason. Figure 9
shows an example where ScType fails to type-check baseAmount
within the function getRewardShare(), which takes as parame-
ter an address token that represents the address of a currency.
baseAmount is calculated as an amount of the token currency on
line 5 via the function getBaseAmount(). Then, token is compared
to the addresses of VADER and USDV tokens by the function calls
to isVADER() and isUSDV() on lines 5 and 9, respectively. If the
true branch is taken on line 5, the function getRewardShare()
swaps baseAmount of the VADER token. If not, USDV is swapped.



Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

Project Name Summary A+ Func
checked TW FP TP NTE MTE Analysis

Time
MarginSwap Dex project for margin trading on Uniswap and Sushiswap 17 18 1 0 1 1 0 8.93s
Vader Protocol Yield project for a collaterized stablecoin 19 53 4 1 2 2 0 28.95s
PoolTogether Gaming service on yield interest 7 13 1 0 1 1 0 8.94s
Tracer Derivative project that supports perpetual markets 11 6 1 0 1 1 1 110.57s
Yield Micro "Lending project supporting borrowing, lending, and liquidity" 4 16 2 0 1 1 1 10.39s
Sushi Trident Dex project for deploying personalized liquidity markets 24 88 0 0 0 2 0 19.64s
yAxis Yield project where users’ aggregated funds are used in strategies for

yield
9 31 4 1 2 1 1 16.81s

Badger Dao Yield project 9 30 2 0 1 0 0 14.61s
Wild Credit Lending project relying on pairs of assets instead of a pool 17 108 4 2 1 0 0 45.37s
PoolTogether v4 Gaming service on yield interest 1 16 0 0 0 1 0 14.99s
Sushi Trident p2 Dex project for deploying personalized liquidity markets 24 45 10 4 2 2 0 19.68s
Swivel Yield project that allows users to set orders for Yield claiming 5 23 2 0 1 0 0 15.03s
Covalent "Users delegate comissions to a Validators, which stakes the funds for

interest"
27 70 1 1 0 0 1 15.87s

Badger Dao p2 Stablecoin to keep the internal contract asset price from fluctuating 8 23 2 0 1 0 0 10.31s
Vader Protocol Yield project for a collaterized stablecoin (Swap) 34 113 13 2 6 2 0 66.86s
yAxis p2 Yield project where users’ aggregated funds are used in strategies for

yield
5 8 0 0 0 1 0 9.58s

Malt Finance "Stablecoin for the contract token, Malt" 27 40 0 0 0 2 0 11.998s
Perennial Derivative project supporting synthetic token perpetual markets 3 1 1 0 1 0 0 9.35s
Sublime Lending contract dependent on trust minimization 16 65 5 2 2 0 0 24.54s
Yeti Finance Lending project made against a contract specific token 10 29 0 0 0 1 0 12.35s
Vader Protocol p3 Yield project for a collaterized stablecoin 4 36 4 0 3 1 0 16.38s
InsureDao Insurance markets where buyers pay premium for protection against

losses
10 61 0 0 0 1 0 14.86s

Rocket Joe Dex project where users exchange funds in return for new project
liquidity

27 37 3 1 1 0 0 2.860s

Concur Finance Yield project 15 26 0 0 0 1 0 2.980s
Biconomy Hyphen Cross Chain project where users can deposit and withdraw for pools

on different chains
16 61 1 0 1 0 0 14.64s

Sublime Lending project allowing users to create custom lending pools 8 47 0 0 0 1 0 25.84s
Volt Dex project which conserves the value of user funds against inflation 1 23 0 0 0 1 0 18.86s
Badger Dao p3 Yield project 8 76 0 0 0 1 0 16.22s
Tigris Trade Dex project utilizing off-chain oracles to provide real-time prices 33 84 2 0 1 1 0 7.024s
Total 64 14 29 24 4
* Annotations (A+), Total Warnings (TW), False Positive (FP), True Positive (TP), Not Type Error (NTE), Missed Type Error (MTE)

Table 3: Evaluation Results

1 int usdvReserve; //an amount of USDC

2 int vaderReserve; //an amount of WETH

3 function getRewardShare(address token) external {

4 uint baseAmount = getBaseAmount(token);

5 if (isVader(token)) {

6 uint _share = calcShare(_baseAmount ,

7 usdvReserve , vaderReserve);

8 ...

9 } else if(isUSDC(token)) {

10 uint _share = calcShare(_baseAmount , vaderReserve ,

usdvReserve);

11 ...

12 }

13 ...

14 }

Figure 9: False Positive Example in Vader Protocol p1

ScType cannot resolve baseAmount to a unique token unit. Solving
this problem may require path-sensitive analysis such as symbolic
execution. We will leave this to our future work.

4.3 RQ2: Efficiency
To answer the research question regarding efficiency, we measure
the cost of our tool, which is two-fold: the time of analysis and
the total number of annotations. The former is shown in the last
column of Table 3. Observe that the tool is very time affordable,
with the maximum analysis time being less than 20 seconds. We
point out that ScType automatically type-checks all functions that
are being called, regardless of whether or not they reside in the
same contract. The number of annotations is also reasonable given
the large number of functions checked. Most of the annotations
can be derived with minimum one-time manual efforts.

1 function belowMaintenanceThreshold(uint256 loan , uinst256

collateral) external {

2 ...

3 - return 100 *collateral >= liquidationThresholdPercent *loan;

4 + return 100 *collateral < liquidationThresholdPercent *loan;

5 }

Figure 10: Not-Type-Error Example in MarginSwap

4.4 RQ3: Distribution of Type Errors
We categorize the 33 different accounting type bugs (29 found by
ScType and 4 missed) into 3 categories: token unit bugs, scaling fac-
tor bugs, and financial type bugs. Their numbers are 10, 12, and 11,
respectively, which represent an approximately even distribution.
The distribution strongly supports our current design. In addition,
we find it a bit counter intuitive that token unit bugs are almost as
common as the other two kinds, although they are simpler.

4.5 RQ4: Capacity of Type System
As shown in Table 3, ScType cannot detect 28 accounting bugs.

Out of the 28, 24 are not type errors and deemed out-of-scope, while
4 are type errors that currently cannot be handled. In this section,
we provide two case studies to illustrate these two types of bugs.
Figure 10 shows a typical not-type-error (NTE). The bug lies in
that the developers used the wrong comparison. Other NTE types
include coefficient errors and even use of wrong formulas. These
bugs need stronger oracles than type rules, such as input-output
pairs and formal specification of business models. Figure 11 shows a
missed-type-error (MTE). This function computes the amount that a



ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

1 uint256 totalReserve;

2 uint256 strategyReserve;

3 function setCap(uint256 cap) external {

4 ...

5 diff = strategyReserve - cap

6 - totalReserve -= strategyReserve;

7 + totalReserve -= diff;

8 ...

9 }

Figure 11: Missed-Type-Error Example in yAxis p1

certain reserve of some strategy (e.g., a contract that yields) exceeds
a cap and removes the excess from the total reserve. In particular, the
specific reserve is denoted by variable strategyReserve, the cap is
cap, the excess is diff and the total reserve is totalReserve. The
bug lies in that developers incorrectly subtract strategyReserve,
while they should subtract diff. Although it is beyond our current
system, a stronger type system that models balance delta such as
diff as well as balance upper-bound like capmay prevent this bug.
We leave this to our future work.

4.6 RQ5: Finding Zero-days
To study the real-world impact of ScType, we use it to audit a large
real-world contract through Code4Rena. The project has over 10
thousands lines of code. We applied the technique on 9 contracts,
found and reported 6 zero-days, with 4 of them leading to direct
fund loss. Three of them are financial type errors and the other three
are token unit bugs.We have created exploit inputs for these bugs as
proof-of-concepts. According to Code4Rena’s policy, details should
not be made public until the judges inspect all the bug reports and
the developers are given the chances to fix the bugs.

5 THREATS TO VALIDITY
There is internal threat to validity due to human mistakes in type
annotations. In practice, these annotations are mostly obvious from
documentation and variable names. For example, fee and debt vari-
ables tend to have subwords “fee" and “debt" in their variable
names. In addition, there may be implementation errors. As wrong
annotations/implementations lead to spurious type errors, the few
false positives by ScType indicate that the threat is mitigated. In
the future, we plan to further reduce the human efforts (and hence
the internal threat) by mining variables’ financial meanings. The
external threat mainly lies in the subjects used in our study. We
mainly use the bugs in [1], which may not be representative. The
risk is mitigated as all projects in the benchmark are real-world ap-
plications, with many having high complexity. The bug reports had
gone through multiple rounds of interactions between auditters,
developers, and Code4rena judges. In addition, we recently apply
ScType to a very complex project and have encouraging results.

6 RELATEDWORK
Detecting Business-related Vulnerabilities. Accounting bugs
are related to business models. There have been pioneering efforts
in detecting business related bugs. Wang et al. [19] proposed a
fuzzing tool Vultron, which developed an interesting observation
regarding balance and transaction invariants. In particular, the total
balance of all the users and the contract should be the same, and

transactions in or out of the contract should correspond to the same
increase or decrease in total balance. This prevents bugs such as not
updating a contract’s balance after awithdraw. They later developed
mining techniques to infer these invariants [17, 18, 20]. Fairness
bug detection [21] aimed to detect unfair behaviors for game-like
contracts having multiple participants. Sun et al. [22] developed a
method to detect smart contract vulnerabilities based on a swap
invariant and a transfer invariant, or logical rules that must be
followed in order to facilitate proper functions. The technique can
detect overflows and unprotected asset increases. In comparison,
ScType can detect type problems that are largely complementary
to the above works. Verification techniques [23–30] are capable of
detecting a wide spectrum of bugs including accounting bugs if the
user can provide the specifications. In comparison, ScType encodes
properties in its type rules.
Abstract Type Inference and Checking. ScType is essentially an
abstract type system [31–40] that derives abstract types with much
richer semantics than primitive types. However, existing techniques
do not focus on smart contracts, which have very unique finance
oriented semantics. Tan et al. [30] developed a refinement type sys-
tem known as SolType for Solidity. It models low level relationships
between integers and checks for overflows/underflows.
Smart Contract Bug Finding. ScType is related to smart con-
tract bug finding in general, including static analysis [2, 41–50],
fuzzing [14, 19, 51–60], and symbolic execution [15, 37, 55, 61–67].
In contract, ScType focuses finding accounting bugs, complemen-
tary to these techniques.
Bug Studies. We are inspired by a recent study on smart contract
vulnerabilities [1], which showed the prevalence of accounting
bugs and the difficulty of finding them, and also by a list of other
comprehensive studies of various kinds of smart contract bugs and
programming practices [68–75].

7 CONCLUSION
We develop an abstract type inference and checking technique to
detect accounting bugs in smart contracts, a kind of bug difficult
for existing automatic tools. The technique models token units,
scaling factors, and financial meanings of individual variables and
checks type consistencies. Our results show thatmore 58% of known
accounting bugs are type errors, and our tool detects 87.9% of these
type errors. It also finds 6 zero-days.



Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

REFERENCES
[1] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying exploitable bugs in smart

contracts,” 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 615–627, 2023.

[2] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework for smart
contracts,” in WETSEB@ICSE. IEEE / ACM, 2019.

[3] “Code4rena.” [Online]. Available: https://code4rena.com
[4] “Sctype,” 2023. [Online]. Available: https://github.com/NioTheFirst/ScType/tree/

ICSE24Artifact
[5] “Vader protocol p1 project,” 2023. [Online]. Available: https://github.com/

ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/5/vader-protocol
[6] “Tracer project,” 2023. [Online]. Available: https://github.com/ZhangZhuoSJTU/

Web3Bugs/tree/main/contracts/16
[7] “Perpetual markets,” 2023. [Online]. Available: https://milkroad.com/funding/

perpetual-contracts/
[8] “Funding fee,” 2023. [Online]. Available: https://www.binance.com/en/blog/

futures/what-are-funding-fees-in-binance-futures-6595842576313788144
[9] “Tigris trade project,” 2023. [Online]. Available: https://github.com/

ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/192
[10] “Biconomy project,” 2023. [Online]. Available: https://github.com/

ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/97
[11] R. F. Muth, “The derived demand curve for a productive factor and the industry

supply curve,” Oxford Economic Papers, vol. 16, no. 2, 1964.
[12] “Defillama.” [Online]. Available: https://defillama.com/
[13] “defillama/categories,” 2023. [Online]. Available: https://defillama.com/categories
[14] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, “Smartian: Enhancing

smart contract fuzzing with static and dynamic data-flow analyses,” inASE. IEEE,
2021.

[15] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016.

[16] “Consensys/mythril,” 2022. [Online]. Available: https://github.com/ConsenSys/
mythril

[17] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in smart contracts
with role mining,” Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2022.

[18] Y. Liu, “A unified specificationmining framework for smart contracts,” Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering,
2022.

[19] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “Vultron: catching vulnerable smart
contracts once and for all,” in ICSE-NIER. IEEE, 2019.

[20] Y. Liu and Y. Li, “Invcon: A dynamic invariant detector for ethereum smart con-
tracts,” Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022.

[21] Y. Liu, Y. Li, S.-W. Lin, and R.-R. Zhao, “Towards automated verification of smart
contract fairness,” Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2020.

[22] J. lei Sun, S. Huang, X. Wang, M. Wang, and J. Du, “A detection method for
scarcity defect of blockchain digital asset based on invariant analysis,” 2022 IEEE
22nd International Conference on Software Quality, Reliability and Security (QRS),
pp. 73–84, 2022.

[23] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sa-
giv, and Y. Zohar, “Online detection of effectively callback free objects with
applications to smart contracts,” Proc. ACM Program. Lang., vol. 2, no. POPL, pp.
48:1–48:28, 2018.

[24] Á. Hajdu and D. Jovanovic, “solc-verify: A modular verifier for solidity smart
contracts,” inVSTTE, ser. Lecture Notes in Computer Science, vol. 12031. Springer,
2019, pp. 161–179.

[25] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, I. Naseer, and K. Ferles,
“Formal verification of workflow policies for smart contracts in azure blockchain,”
in VSTTE, ser. Lecture Notes in Computer Science, vol. 12031. Springer, 2019,
pp. 87–106.

[26] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VERISMART: A highly precise safety
verifier for ethereum smart contracts,” in IEEE Symposium on Security and Privacy.
IEEE, 2020, pp. 1678–1694.

[27] J. Jiao, S. Kan, S.-W. Lin, D. Sanán, Y. Liu, and J. Sun, “Semantic understand-
ing of smart contracts: Executable operational semantics of solidity,” 2020 IEEE
Symposium on Security and Privacy (SP), pp. 1695–1712, 2020.

[28] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart contract formal
specification and verification,” ACM Computing Surveys (CSUR), vol. 54, pp. 1 –
38, 2020.

[29] J. Jiao, S.-W. Lin, and J. Sun, “A generalized formal semantic framework for smart
contracts,” Fundamental Approaches to Software Engineering, vol. 12076, pp. 75 –
96, 2020.

[30] B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng, “Soltype: refinement types
for arithmetic overflow in solidity,” Proceedings of the ACM on Programming

Languages, vol. 6, no. POPL, pp. 1–29, 2022.
[31] M. Karr and D. B. Loveman, “Incorporation of units into programming languages,”

Commun. ACM, vol. 21, pp. 385–391, 1978.
[32] S. Hangal and M. S. Lam, “Automatic dimension inference and checking for

object-oriented programs,” 2009 IEEE 31st International Conference on Software
Engineering, pp. 155–165, 2009.

[33] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst, “Dynamic inference of
abstract types,” in International Symposium on Software Testing and Analysis, 2006.

[34] V. Raychev, M. T. Vechev, and A. Krause, “Predicting program properties from
"big code",” ACM SIGPLAN Notices, vol. 50, pp. 111 – 124, 2015.

[35] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin: specification
inference for explicit information flow problems,” in ACM-SIGPLAN Symposium
on Programming Language Design and Implementation, 2009.

[36] S. Kate, J.-P. Ore, X. Zhang, S. Elbaum, and Z. Xu, “Phys: Probabilistic physical
unit assignment and inconsistency detection,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018, 2018, p. 563–573.

[37] S. So, S. Hong, and H. Oh, “SmarTest: Effectively hunting vulnerable transac-
tion sequences in smart contracts through language Model-Guided symbolic
execution,” in 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021.

[38] A. J. Kennedy, “Dimension types,” in European Symposium on Programming, 1994.
[39] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: neural type hints,”

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020.

[40] J.-P. Ore, C. Detweiler, and S. G. Elbaum, “Lightweight detection of physical
unit inconsistencies without program annotations,” Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2017.

[41] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts devour
your money,” in SANER. IEEE Computer Society, 2017, pp. 442–446.

[42] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. T.
Vechev, “Securify: Practical security analysis of smart contracts,” in CCS. ACM,
2018, pp. 67–82.

[43] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and
B. Scholz, “Vandal: A scalable security analysis framework for smart contracts,”
arXiv preprint arXiv:1809.03981, 2018.

[44] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis, “Madmax:
Surviving out-of-gas conditions in ethereum smart contracts,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, 2018.

[45] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and H. Kurihara, “Security
assurance for smart contract,” in NTMS. IEEE, 2018.

[46] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” in
WETSEB@ICSE. ACM, 2018, pp. 9–16.

[47] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: analyzing safety of smart
contracts.” in NDSS, 2018.

[48] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting existing smart
contracts against re-entrancy attacks,” arXiv preprint arXiv:1812.05934, 2018.

[49] S. Wang, C. Zhang, and Z. Su, “Detecting nondeterministic payment bugs in
ethereum smart contracts,” Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, 2019.

[50] J. Huang, K. Zhou, A. Xiong, and D. Li, “Smart contract vulnerability detection
model based on multi-task learning,” Sensors, 2022.

[51] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard: finding reen-
trancy bugs in smart contracts,” in ICSE-Companion. IEEE, 2018.

[52] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart contracts for
vulnerability detection,” in ASE. IEEE, 2018.

[53] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: an efficient
adaptive fuzzer for solidity smart contracts,” in ICSE. ACM, 2020, pp. 778–788.

[54] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu, “Oracle-supported
dynamic exploit generation for smart contracts,” IEEE Transactions on Dependable
and Secure Computing, 2020.

[55] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A data
dependency-aware hybrid fuzzer for smart contracts,” in EuroS&P. IEEE, 2021,
pp. 103–119.

[56] A. Groce and G. Grieco, “echidna-parade: a tool for diverse multicore smart
contract fuzzing,” in ISSTA. ACM, 2021, pp. 658–661.

[57] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective, usable,
and fast fuzzing for smart contracts,” in ISSTA. ACM, 2020, pp. 557–560.

[58] Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao, “xfuzz: Machine
learning guided cross-contract fuzzing,” IEEE Transactions on Dependable and
Secure Computing, 2022.

[59] J. He, M. Balunovic, N. Ambroladze, P. Tsankov, and M. T. Vechev, “Learning
to fuzz from symbolic execution with application to smart contracts,” in CCS.
ACM, 2019, pp. 531–548.

[60] V. Wüstholz and M. Christakis, “Harvey: a greybox fuzzer for smart contracts,”
in ESEC/SIGSOFT FSE. ACM, 2020, pp. 1398–1409.

https://code4rena.com
https://github.com/NioTheFirst/ScType/tree/ICSE24Artifact
https://github.com/NioTheFirst/ScType/tree/ICSE24Artifact
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/5/vader-protocol
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/5/vader-protocol
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/16
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/16
https://milkroad.com/funding/perpetual-contracts/
https://milkroad.com/funding/perpetual-contracts/
https://www.binance.com/en/blog/futures/what-are-funding-fees-in-binance-futures-6595842576313788144
https://www.binance.com/en/blog/futures/what-are-funding-fees-in-binance-futures-6595842576313788144
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/192
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/192
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/97
https://github.com/ZhangZhuoSJTU/Web3Bugs/tree/main/contracts/97
https://defillama.com/
https://defillama.com/categories
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril


ICSE 2024, April 2024, Lisbon, Portugal Brian Zhang

[61] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the greedy,
prodigal, and suicidal contracts at scale,” in ACSAC. ACM, 2018, pp. 653–663.

[62] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically exploit
smart contracts,” in USENIX Security Symposium. USENIX Association, 2018,
pp. 1317–1333.

[63] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson,
and A. Dinaburg, “Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts,” in ASE. IEEE, 2019.

[64] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “scompile: Critical path
identification and analysis for smart contracts,” in ICFEM, ser. Lecture Notes in
Computer Science, vol. 11852. Springer, 2019, pp. 286–304.

[65] Z. Wang, B. Wen, Z. Luo, and S. Liu, “Mar: A dynamic symbol execution detection
method for smart contract reentry vulnerability,” in International Conference on
Blockchain and Trustworthy Systems. Springer, 2021.

[66] “Blockchain technology solutions.” [Online]. Available: https://consensys.net/
[67] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish: Vetting

smart contract state-inconsistency bugs in seconds,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022.

[68] J. Chen, X. Xia, D. Lo, J. C. Grundy, X. Luo, and T. Chen, “Defining smart contract
defects on ethereum,” IEEE Trans. Software Eng., vol. 48, no. 2, pp. 327–345, 2022.

[69] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs in ethereum
smart contracts,” in ICSME. IEEE, 2020, pp. 139–150.

[70] W. Dingman, A. Cohen, N. Ferrara, A. Lynch, P. Jasinski, P. E. Black, and L. Deng,
“Classification of smart contract bugs using the NIST bugs framework,” in SERA.
IEEE, 2019, pp. 116–123.

[71] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable does not
imply exploited.” in USENIX Security Symposium, 2021.

[72] W. Zhang, L. Wei, S. C. Cheung, Y. Liu, S. Li, L. Liu, and M. R. Lyu, “Combatting
front-running in smart contracts: Attack mining, benchmark construction and
vulnerability detector evaluation,” IEEE Transactions on Software Engineering,
vol. 49, pp. 3630–3646, 2022.

[73] V. Piantadosi, G. Rosa, D. Placella, S. Scalabrino, and R. Oliveto, “Detecting
functional and security-related issues in smart contracts: A systematic literature
review,” Software: Practice and Experience, vol. 53, pp. 465 – 495, 2022.

[74] J. Chen, X. Xia, D. Lo, and J. C. Grundy, “Why do smart contracts self-destruct? in-
vestigating the selfdestruct function on ethereum,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, pp. 1 – 37, 2020.

[75] J. Chen, X. Xia, D. Lo, J. C. Grundy, and X. Yang, “Maintenance-related concerns
for post-deployed ethereum smart contract development: issues, techniques, and
future challenges,” Empirical Software Engineering, vol. 26, 2021.

https://consensys.net/


Towards Finding Accounting Errors in Smart Contracts ICSE 2024, April 2024, Lisbon, Portugal

⊕ RawBal NetBal AccBal T-Supply Fee Debt Interest Dividend

RawBal RawBal ✗ ✗ T-Supply ✗ ✗ ✗ AccBal
NetBal ✗ NetBal ✗ T-Supply ✗ ✗ ✗ AccBal
AccBal ✗ ✗ AccBal ✗ ✗ ✗ ✗ ✗

T-Supply T-Supply T-Supply ✗ T-Supply T-Supply ✗ ✗ ✗

Fee ✗ ✗ ✗ T-Supply Fee Debt Interest ✗

Debt ✗ ✗ ✗ ✗ Debt Debt Debt ✗

Interest ✗ ✗ ✗ ✗ Interest Debt Interest ✗

Dividend AccBal AccBal ✗ ✗ ✗ ✗ ✗ Dividend

Table 1: Definition of Operators ⊕ (top_row ⊕ left_column)

⊗, ⊘ RawBal NetBal AccBal T-Supply Fee Debt Interest Price Dividend

RawBal RawBal ✗ ✗ RawBal ✗ ✗ ✗ RawBal ✗

NetBal ✗ NetBal ✗ ✗ ✗ ✗ ✗ NetBal ✗

AccBal ✗ ✗ AccBal ✗ ✗ ✗ ✗ AccBal ✗

T-Supply RawBal ✗ ✗ ✗ ✗ ✗ ✗ T-Supply ✗

Fee ✗ ✗ ✗ ✗ ✗ ✗ ✗ Fee ✗

Debt ✗ ✗ ✗ ✗ ✗ ✗ ✗ Debt ✗

Interest ✗ ✗ ✗ ✗ ✗ ✗ ✗ Interest ✗

Price RawBal NetBal AccBal T-Supply Fee Debt Interest Price Dividend
Dividend ✗ ✗ ✗ ✗ ✗ ✗ ✗ Dividend ✗

Table 2: Definition of Operator ⊗ (top_row ⊗ left_column)

⊗, ⊘ RawBal NetBal AccBal T-Supply Fee Debt Interest Price Dividend

RawBal Price ✗ ✗ Price ✗ ✗ ✗ ✗ ✗

NetBal ✗ Price ✗ ✗ ✗ ✗ ✗ ✗ ✗

AccBal ✗ ✗ Price ✗ ✗ ✗ ✗ ✗ ✗

T-Supply Price ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Fee ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Debt ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Interest ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Price RawBal NetBal AccBal T-Supply Fee Debt Interest Price Dividend
Dividend ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 3: Definition of Operator ⊘ (top_row ⊘ left_column)

SUPPLEMENTARY MATERIAL

1 DEFINITIONS OF OPERATORS ⊕, ⊗, AND ⊘
Table 1 shows the definition for ⊕. The cells in this table represent
the results of the various additions between financial types. For
example, Debt ⊕ Fee = Debt (column 7, row 6); Fee cannot be added
to various types of balances RawBal, NetBal, or AccBal as fee is a
charge (see the deposit() and withdraw() functions in Figure 3);
AccBal cannot be added to T-Supply as accrued balance includes
dividend that is taken from total supply and hence adding it back is
problematic; Debt is not allowed to be added to any sort of balances
which denote the assets a user owns.

Table 3 shows the definition for ⊗. For example, NetBal ⊗ Price
= NetBal (column 3, row 9 ). Intuitively, a net balance that is con-
verted to another currency by multiplying a price is still a net
balance. Fee, Debt, Interest, and Dividend are only allowed to
have multiplication with Prince, but not any other types. The same
kind of balances are allowed to multiply (e.g., RawBal ⊗ RawBal).
This happens in computing price curves. But multiplication of dif-
ferent kinds of balances are disallowed due to their incompatible
nature.

Table 3 shows the definition for ⊘. Divisions of balances of the
same type yield Price. Any type divided by a Price yields the

same type. This often happens during trading. Price divided by
Price corresponds to getting price through a chain of trading.

2 SCTYPE ARTIFACT AND BENCHMARK
SCType, our tool, is a Solidity type checker written in Python 3.
There are two Docker Images that we have provided for our tool.
Both of the images contain the tool, as well as the benchmarks we
use. They can be found at an anonymous site [4].

The full Docker Image holds the complete benchmark set and all
of their dependencies. It includes 29 projects. It can be downloaded
by running

>docker pull icse24sctype/full

It is 23 GB as all the dependences of all these projects have to be
in place for Solidity and Slither.

The reduced Docker Image holds one benchmark case and its
dependencies. It can be downloaded by running

>docker pull icse24sctype/min

It is 1 GB.
Benchmark. Our benchmark test cases can be found in the ‘Bench-
mark‘ directory. The reduced version only contains one benchmark
case, which is Vader Protocol p1. The smart contract tested is
the Utils.sol file in the Benchmark/Vader_Protocol
_p1/vader-protocol/contracts directory. The full version con-
tains all of the benchmarks.
Tests. To run the reduced tests, run the following command in a
Linux environment:

>./test_minbenchmark.sh

To run the full tests, run the following command:

>./test_benchmark.sh‘

The type-checking results are in green. The output of the warn-
ings is: Variable name (IR), Function name, and Operation with
mistake. Please ignore all other outputs. One of the three warn-
ings describing the function ‘calcLiquidityUnits()‘ of the second
benchmark in the full version or the only benchmark in the reduced
version is the example case we explain in our Motivation section.
Source The source code for our tool can be found in the directory:
slither/detectors/my_detectors. In particular, tcheck.py is
the main engine.


	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 A Conceptual DeFi Model
	3.2 Instantiation of the Conceptual Model to DeFi Contracts
	3.3 Token Unit and Scaling Factor
	3.4 Type System

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness
	4.3 RQ2: Efficiency
	4.4 RQ3: Distribution of Type Errors
	4.5 RQ4: Capacity of Type System
	4.6 RQ5: Finding Zero-days

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References
	1 Definitions of Operators , , and 
	2 SCType Artifact and Benchmark

